
 

Residential ventilation and carcinogenesis.

Shireesh Apte*

Editorial Board, Journal of Excipients and Food Chemicals

Opinion and Commentary Paper

KEY WORDS: Residential ventilation, carcinogenesis, cancer, hypercapnia, COPD, sick building syndrome,
indoor carbon dioxide, metabolic syndrome

INTRODUCTION

The adverse effects of the most widely
recognized greenhouse gas and pollutant on the
planet, carbon dioxide, are also the most
ubiquitously overlooked when present as a
(processed) food ingredient, as a (supercritical)
solvent and as an excipient. CO2 is a
constituent of carbonated beverages, used as an
insufflation gas and to elevate alveolar CO2

concentration in acute respiratory distress
syndrome (ARDS). It is used in endoscopic and
dermatological cryotherapy, as a solvent in
food, chemical and pharmaceutical supercritical
extraction processes, as an inert atmosphere
during certain types of active pharmaceutical
ingredient (API), excipient and drug product
manufacture and in fire extinguishers. Notably,
it is also breathed in at ~6 times its
concentration in atmospheric air over one third
of the lifetime of individuals who dwell in
closed mechanically ventilated environments.

Increased CO2 concentration (or partial
pressure); independent of extracellular pH (1)
as well as sensing enzymes associated with the
hypoxia inducible factor (HIF) pathway in vitro;
correlated with a suppression of genes involved
the regulation of innate immunity and
inflammation (2). This phenomenon, in turn,
was largely attributed to altered activity of the
nuclear factor-kappa B (NF-kB) family of
transcription factors (3). Elevated CO2

(hypercapnia) inhibited autophagy in the human
macrophage independently of acidosis by
inducing the expression of antiapoptotic factors
Bcl-2 and Bcl-xL (4). Hypercapnia suppressed
macrophage synthesis of pro-inflammatory
cytokines tumor necrosis factor (TNF) and
Interleukin (IL-6), phagocytosis and the
generation of reactive oxygen species (ROS) by
lung neutrophils (5) independently of intra or
extracellular acidosis by mouse and human
macrophages in vitro. Epithelial cell lines from
mice exposed to CO2 concentrations above 5%
resulted in the increased transcription and
secretion of proinflammatory cytokines
resulting in lung inflammation in vivo (6).

*Corresponding author Corresponding author: 5204 Coventry Court,
Colleyville, TX 76034,   Tel: 817 501 2984, e-mail:
shireeshpapte@msn.com

This Journal is © IPEC-Americas Inc September 2016 J. Excipients and Food Chem. 7 (3) 2016 -  77 
DOWNLOAD FREE FROM HTTP://OJS.ABO.FI/JEFC
This material MAY NOT be used for commercial purposes
see Creative Commons Attribution NonCommercial‐NoDerivatives 4.0 International



Opinion and Commentary Paper

Arterial CO2 is elevated in chronic obstructive
pulmonary disease (COPD) and as a
consequence of ‘permissive hypercapnia’;
therapeutic ventilation in acute respiratory
distress syndrome (ARDS) to reduce
mechanical damage to the lungs (7), lung
oxidative stress and alveolar cell apoptosis (8).
Therapeutic hypercapnia with 3% inhaled CO2

was also found to protect against hepatic
ischemia reperfusion injury in a murine model
(9) by reducing and increasing the levels of pro
and anti-inflammatory cytokines respectively
and by attenuating both apoptosis and the over-
expression of NF-kB. For example, protein
phosphatase-2 (PP2A) release and NF-κB
nuclear translocation from the pulmonary cells
of mice exposed to hypercapnia for one hour
had p-values < 0.027 for a CO2 concentration
5% when compared with that at 0% (6).
Similarly, the phagocytic index (PI) and H2O2

production of lung neutrophils from
Pseudomonas aeruginosa infected mice decreased
significantly from air-breathing to 10% CO2

(p<0.003 for PI)(5).

There exists a profusion of signaling pathways
and transcription factors that can repolarize
macrophages either toward a pro-tumor or an
anti-tumor phenotype (10). In this context,
long-term, consistent intermittently elevated
CO2 would be expected to reprogram
macrophages toward an anti-inflammatory,
immunosuppressive phenotype.

A common ventilation rate measure for
residential buildings is the air changes per hour
(ACH), which is the hourly ventilation rate
divided by the volume of the space. Today,
more rigorous building codes and voluntary
labeling programs are requiring builders to test
for and meet stricter air leakage (infiltration)
limits. The 2009 International Energy
Conservation Code (IECC), required homes to
have air leakage of 7 or less air changes per 

hour at 50 Pa pressure (ACH 50) while the
2012 IECC requires homes to meet an
airtightness limit of 3 ACH 50 or less in most
climates and the Passive House program sets
the limit at 0.6 ACH 50.  This translates to 0.35
(in 2009), 0.15 (in 2012) and 0.03 ACH at
atmospheric pressure (11). The American
Society of heating, refrigerating and air-
conditioning engineers (ASHRAE) 62.2
standard recommends a minimum ACH of 0.35
but no less than 3 (cubic feet per minute)
CFM/100 square feet (15 l/s/100 square
meters) plus 7.5 CFM/person (3.5
L/s/person). The ASHRAE standards assume
the dwelling to be one continuous ventilated
zone. However, since different rooms can be
isolated by closable doors with minimal air
exchange among them; and given that
significantly non-uniform diurnal dweller
density exists; the greatest inspired CO2 levels
can be anticipated in a closed bedroom during
the night. Since the International residential
code (IRC) 2012, only requires whole house
mechanical ventilation where the tested air
infiltration rate is < 5 ACH50 (< 0.25 ACH at
atmospheric pressure) such ventilation systems
can be, and frequently are, designed to cycle on
and off in tandem with the home’s heating,
ventilation and air conditioning (HVAC) system
(12). These homes are under ventilated since
fresh outside air is metered through the
intake/return duct only when the thermostat
calls for heating/cooling. Consequently, when
there is minimum difference between outside
and thermostat set temperatures, typically
occurring during late evening to early morning,
CO2 levels increase. As builders and codes
approach zero energy homes with ever-tighter
and efficient insulated building enclosures,
ventilation requirements are not regulated or
implemented at a pace comparable to those for
energy conservation. It is ironic that one of the
justifications for recommending tighter
standards for residential homes (other than
increased energy efficiency) is to decrease
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indoor pollutants such as fungi, pollen, mold
and bacteria. However, the increase in CO2

levels may negate these benefits because of its
propensity to attenuate resistance to
opportunistic microbial infections.

METHODS

The mathematical model in this paper assumes
a 16.5 x 16.5 t x 8 feet closed bedroom (61.7
m3) (13) with 2 persons exposed to the
maximum long-term consistently elevated CO2

levels for 6.6 hours every night. CO2 exhaled
per minute per person was taken as 0.5 g (14).
The CO2 concentration in the room was
calculated using Equation 1(15). 

Eq. 1

Where; c is the CO2 concentration in the room
at time t hours, n is the ACH, q is the
concentration of the CO2 supplied to the room,
taken to be 400 ppm, t is the time in hours and
v is the volume of the room.

Arterial PCO2 was calculated from humans
brea th ing  a i r  conta in ing  d i f fe rent
concentrations of CO2 from data obtained from
three studies (16-18) The data fit a sigmoidal
relationship between normobaric and 7%
atmospheric CO2 with an R2 > 0.999.

Eq. 2

The normobaric CO2 concentration was taken
as 0.03% and the corresponding arterial PCO2

as 40 mmHg. The solubility of CO2 in blood
was calculated for different atmospheric
concentrations by first converting those
concentrations to arterial PCO2 values (from
Equation 2 above) and then using the CO2

solubility coefficient(19) of 0.0308 mMol. L-1.

mmHg-1 to calculate the solubility at a given
arterial PCO2. The pH was calculated from the
Henderson-Hasselbach equation using a value
of 6.1 for the pKa of carbonic acid (Equation
3).

Eq. 3

Where, HCO3-1 is the bicarbonate ion
concentration in mM. L-1 , and pCO2 is the
partial pressure of CO2 in mmHg.

RESULTS AND DISCUSSION

As shown in Table 1, the indoor CO2

concentration can increase to as much as 1600
and 2400 ppm over a period of 6 hours with an
ACH of 0.35 and 0.15 respectively; representing
a 4 and 6 times increase over normobaric
atmospheric CO2 levels. It has been postulated
that the metabolic syndrome represents an
adaptation to these increased CO2 levels (20).

Table 1 Concentration of indoor CO2 over time as a
function of ACH

Minutes ppm CO2 @ 0.15 ACH ppm CO2 @ 0.35 ACH

0 387.00 387.00

20 548.02 542.81

30 625.55 614.16

60 846.87 804.85

80 985.46 914.65

120 1242.70 1099.31

160 1475.45 1245.55

200 1686.06 1361.36

240 1876.63 1453.06

280 2049.07 1525.69

320 2205.09 1583.20

360 2346.27 1628.74

400 2474.02 1664.81

Table 2 shows that even though there is a ~4
fold increase in the partial pressure of CO2 at
400 minutes, the increased value is negligible
when compared with a PCO2 of ~40 mm Hg in
arterial blood. 
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Table 2 pH of blood as a function of inhaled CO2 concentration at 0.35 ACH

Minutes
CO2 air,
mm Hg

ppm CO2
Arterial CO2 partial
pressure, mmHg

Solubility of CO2 in blood
mMol/L

pH of blood

0 0.294 387.00 40.051 1.201 7.363

20 0.413 542.81 40.052 1.201 7.363

30 0.467 614.16 40.053 1.201 7.363

60 0.612 804.85 40.054 1.201 7.363

80 0.695 914.65 40.056 1.201 7.363

120 0.835 1099.31 40.058 1.201 7.363

160 0.947 1245.55 40.060 1.201 7.363

200 1.035 1361.36 40.062 1.201 7.363

240 1.104 1453.06 40.064 1.201 7.363

280 1.160 1525.69 40.065 1.201 7.363

320 1.203 1583.20 40.066 1.202 7.363

360 1.238 1628.74 40.067 1.202 7.363

400 1.265 1664.81 40.068 1.202 7.363

This explains the insignificant increase in
arterial PCO2 (and solubility) at a CO2

concentration of 1664 ppm; in turn explaining
the constant blood pH. This is consistent with
the Davenport diagram which predicts a pH
change of only 0.15 units when the arterial
PCO2 is increased to 60 mm Hg (21),
corresponding to an atmospheric CO2

concentration of 7% as calculated from the
equation. Other studies reported an even lesser
effect of arterial PCO2 on pH; of the order of
decreasing 0.014 pH units for every 10 mm Hg
increase of PCO2,  even in hypercapnic COPD
patients (22). It can be readily seen that elevated
indoor CO2 concentrations in under ventilated
dwellings are an order of magnitude lesser than
arterial PCO2 as well as (an order of magnitude)
less than concentrations that could cause an
increase in arterial PCO2. In vitro studies that
reported significant effects of increased PCO2

on inflammation and immunity used
atmospheric PCO2 greater than arterial PCO2

(> 5%); a situation that would never be
expected to occur even with the elevated CO2

levels (~0.5%) in under ventilated homes. In
the absence of a positive concentration
differential between atmospheric and arterial
PCO2 levels in under ventilated homes, it is not

possible to attribute physiological effects using
the classical model of a concentration gradient
or acidosis; consequently such published
models (23) must be viewed with skepticism
(24).

On the other hand, there are significant
changes in the allostatic load, breathing rate;
increased prevalence of acute health symptoms
such as mucosal irritation and headache (25);
slower work performance and a decrement in
decision-making performance (26); at inhaled
CO2 concentrations > 600 ppm suggesting that
a positive concentration gradient between
atmospheric CO2 and arterial CO2 (such as that
employed in in vitro studies) is not necessary to
cause CO2 related physiological effects. Since
physiological effects rarely manifest without
concomitant modulation of the underlying
molecular machinery, an elevation of level to
one order of magnitude greater than that
existing in atmospheric air (such as that found
in under-ventilated homes) may be sufficient to
cause re-programming of signaling pathways
and/or transcription factors upon chronic
exposure. There is no statistical method to
correlate the (statistical significance) of the
observed change in a few measured effectors
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from acute studies that result from large
perturbations to the independent variable with
chronic exposure studies that involve mildly
perturbed variables. However, retrospective
analysis of pathway data that probes multiple
genes and pathways simultaneously (27)
suggests that the effect of interconnected
signaling pathways is to change (the expression
of) observed pathways or genes to either
approach or achieve statistical significance in
chronic exposure studies by virtue of their
known mechanistic involvement in the disease
process. In this case, statistically significant
changes in the expression levels of downstream
bio-effectors are not obligatory. This explains
why statistical significance in acute studies is
not necessarily correlated to clinical outcomes
in chronic studies (28). It is therefore possible
that long-term exposure to intermittent
moderately elevated CO2 levels may cause
clinical outcomes that cannot be detected or
predicted by acute large-magnitude exposures.  
Allostatic load, as quantitated by measuring the
DNA lesion oxidized nucleoside, 8-
hydroxydeoxyguanosine (8-OHdG) and the
pro-inflammatory peptides IL-6 and TNF-α,
was significantly correlated with the difference
between indoor (median 664 ppm) and outdoor
CO2 levels in sick buildings (29). Hypercapnia
can increase the antigenicity and pathogenicity
of opportunistic bacteria (30) residing in the
airway, thereby increasing the potential to cause
allergenic (31), inflammatory and infectious
disease (32). Chronic low-grade upregulation of
pro-inflammatory cytokine and chemokine
network pathways has been known to be
associated with the etiology and progression of
cancer (33).
As a first approximation, regulatory agencies
calculate the acceptable daily intake (ADI) of a
chemical by dividing the no-observed-adverse-
effect-level (NOAEL) by an uncertainty factor.
The uncertainty factor is usually 100, a factor of
10 compensating for interspecies variation and
another factor of 10 compensating for
intraspecies susceptibility or variation of

response (34). Taking 1% CO2 as the NOAEL
above which alteration of gene expression,
modula t ion of  immunolog ica l  and
inflammatory pathways and physiological
adaptive changes (35) were evident in sub-
chronic studies, and correcting only for the
interspecies variability, a dose of 0.1% (1000
ppm) CO2 per day may be considered
analogous to the ADI.

There have been no long-term studies
performed to date to attribute consistently
intermittent moderately elevated CO2 levels to
the modulation of carcinogenesis, thus, there is
no evidence linking the two. Studies on
astronauts, while legitimately focusing on
radiation as being the major causative factor
(36), do not even list elevated CO2 levels in
spacecraft (7000 ppm) as a confounding
variable (37). However, routine reports of
toxicity at these levels has prompted re-
evaluation of long-term exposure. Studies on
submariners adopt the Occupational Safety and
Health Administration (OSHA) standard of a
maximum permissible level of 5000 ppm (38).
Of all the studies that have investigated the
effects of carbonated beverages on cancer risk,
only one mentions CO2 as a probable
mechanistic ingredient (39). The others
concentrate on high fructose corn syrup, sugar
substitutes or carcinogenic compounds that
either spill over into the final product from the
manufacturing process or are minor
components of the ingredients themselves.

CONCLUSIONS

Recent and emerging research suggests that
acute exposure to CO2 levels as low as 1%
alters inflammatory and immune signaling
pathways independent of extra or intracellular
acidosis; including those effectors that are
known to be implicated in the modulation of
carcinogenesis.  Acute exposure to CO2 levels
as low as 600 ppm, which are commonly
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exceeded in indoor air, causes increased
allostatic load and adverse physiological effects. 
Are decreased utility bills a sufficient tradeoff to
compensate for a, as yet undetermined, long-
term risk of carcinogenesis? Will the increased
rate of CO2 greenhouse gas generation caused
by burning fossil fuels to keep homes from
being under-ventilated offset the, as yet
u n d e t e r m i n e d ,  l o n g - t e r m  r i s k  o f
carcinogenesis? The building code today takes
into account the probability of electrocution by
mandating location specific ground fault circuit
interrupters (GFCI). Although unaware of the
less-evident yet potentially far more insidious
risk of carcinogenesis arising from increased
CO2 levels in under-ventilated homes,
ASHRAE standard 62.1-2004 does make
allowance for demand controlled ventilation
(DCV), wherein, CO2-DCV can be 
implemented with a view to  reducing energy
use (40).  Although there is no definitive
evidence linking increased indoor CO2 levels to
carcinogenesis, enough allostatic and
physiological data exists to warrant further
research, especially in the hypercapnia
associated COPD population, in chronic
exposure animal studies and in vitro models.
Given the well-established role of oxygen
sensing pathways in cancer, and the recent
acidosis independent role of CO2 in modulating
immune and inflammation linking pathways, it
seems obligatory to validate (or not) the effects
of long-term inspired elevated CO2 on the
modulation of carcinogenesis.
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